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Acronyms

A adenine. 6, 7, Glossary: adenine

BLAST Basic Local Alignment Search Tool. 13

C cytosine. 6, 7, Glossary: cytosine

DNA Deoxyribonucleic acid. 6, Glossary: DNA

G guanine. 6, 7, Glossary: guanine

HSP High-scoring segment pair. 15, 18, Glossary: high-scoring segment pair

mRNA Messenger ribonucleic acid. 7, Glossary: mRNA

NCBI National Center for Biotechnology Information. 13

RNA Ribonucleic acid. 6, Glossary: RNA

T Thymidine. 6, Glossary: thymine

TLDR Too long, didn’t read. 5

U Uracil. 7, Glossary: uracil
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Glossary

adenine One of the four nucleotides used in DNA and RNA, hydrogen bonds
with guanine. 6

amino acid The building blocks for proteins, typically 20 different types are
used. 7

annotate To assign a name to a sequence with an unknown identity. 13

central dogma DNA makes RNA makes protein. 8

codon A triplet of nucleotides used to encode for a certain amino acid, found
in mRNA when being translated to make proteins. 7

contig A contiguous or continuous stretch of RNA created by overlapping
shorter pieces of RNA known as reads, the output of de novo assemblers.
11

cross entropy Used in information theory to describe how well one probability
distribution can explain data drawn from another probability distribution.
25

cytosine One of the four nucleotides used in DNA and RNA, hydrogen bonds
with thymidine in DNA, uracil in RNA. 6

De Bruijn graph A mathematical graph construct used to assemble short
RNAs or reads into larger RNAs known as contigs. 12

de novo Begin again, from nothing. 9, 11, 15, 16

differentiation The specialization of tissue or cell types, i.e. a stem cell dif-
ferentiating into a neural cell. 12

DNA The priciple molecule responsible for inheritance, harbors genes used for
creating proteins. 6

E-value The expected number of HSPs with a score greater than a particular
score, or the expected number of hits when searching the database of the
same length, found in the statistical output of BLAST. 14
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express The act of a gene being active and being used to make proteins. 12

gap A space in an alignment caused by either a deletion or an insertion. 20

gene The fundamental inheritance unit, comprised of DNA and is responsible
for making one (or more) protein(s). 6

guanine One of the four nucleotides used in DNA and RNA, hydrogen bonds
with cytosine. 6

high-scoring segment pair A pairwise alignment with a large number of ex-
act or very similar matches, used for comparing two sequences together.
15

model organism An organism that can reproduce quickly, has a short lifespan,
high fertility, and other characteristics that make it desirable to study. 15

mRNA A specific class of RNA, used solely to be translated to produce pro-
teins. 7

mutation A change in a sequence that may give rise to a new product that is
formed. 8

next generation sequencing A novel technique that allows for quick and cost
effective sequencing of DNA and RNA. 10

nucleotide The building block of DNA and RNA. 6

paralog A duplicated gene. 17

phylogenetics The study of phylogenies, which represent the predicted evolu-
tionary relationship between different species. 8

plasticity The ability for an organism to adapt to the local environment. 12

protein A type of molecule produced by cells that can have diverse functions,
made of amino acids. 6

read A short stretch of DNA/RNA that was derived from full length DNA/RNA.
11

reference The set of known sequences used to assign names to unknown se-
quences. 11

RNA A molecule that is transcribed from DNA, used in translation of proteins
(mRNA), immune functions (miRNA, siRNA), or binding to molecular
machinery (lncRNA). 6
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score A number that describes how good an alignment is, more same or similar
matches leads to a better score and dissimilar or gaps in the alignment
leads to a worse score. 14

thymine One of the four nucleotides used in DNA, hydrogen bonds with ade-
nine. 6

transcribe To create RNA from DNA. 7

translate To create protein from RNA. 7

uracil One of the four nucleotides used in RNA, hydrogen bonds with adenine.
7
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Chapter 1

Introduction

TLDR: Matt has a problem and needs your advice.
As you may know, I am currently working at a research lab at the University

of Toronto, where I employ my skills as a computer scientist to assist others.
It is not imperative to note that the only computer science course I have taken
was with Mr. Smith at Mentor College but such details do not matter. It also
does not help that I currently study the field of biology and sometimes require
more sophisticated mathematics to solve my problems. Thus I have taken the
initiative to learn some math topics on my own such as multivariable calculus,
linear algebra, and statistics. However, this does not mean that I am formally
trained in it; just enough to get by common problems. But currently, I do not
have a trivial conundrum. This is where you, the reader, come in. I have sent
this document to you as a cry of help as I am now venturing uncharted territory
and would like your help.

Go grab a drink of something. It’s gonna be a long ride.
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Chapter 2

Biology 101

To present the problem, you must learn some of the basics of biology, in partic-
ular: the biological sequences one may encounter, how speciation plays a role
in the evolution of genes, and some bioinformatics along the way.

2.1 The Central Dogma

Biological sequences are central towards living and reproduction. Thus, I will
teach you the 3 main sequences: double stranded DNA (the library / source
code), the single stranded RNA (the temporary messenger / compiled code),
and the protein (the functional molecule / executable).

Your genome is comprised of nucleotides, the building blocks of DNA (and
RNA). These can be differentiated from one another by being covalently bonded
to a certain nitrogenous base. For DNA, these bases are adenine (A), thymi-
dine (T), guanine (G), and cytosine (C). These nucleotide molecules form a
polymer, or a long sequence such that information can be encoded in them. You
can think of this as a contiguous block of memory where the bits (tetrits?) have
4 states. In terms of humans, there are 23 pairs of these nucleotide polymers,
a.k.a. chromosomes, stored in the nucleus of each cell of your body1, excluding
your germ cells (eggs/sperm) which are unpaired.

Within these chromosomes, there are short stretches of DNA called gene
that encode a specific protein. Relative to chromosomal length, which can be
millions of nucleotides long. In humans, we have approximately 20,000 pro-
tein encoding genes with relatively distinct functions. However, some genes
have very high sequence similarity, implying that a phenomenon known as gene
duplication took place. Essentially, during cellular replication (when one cell
becomes two cells), each chromosome must be copied. Errors may arise and can
lead to duplications or deletions of genetic material albeit rarely. If any of these
typographical accidents occurs in one’s germ cells, that error will propagate onto
their offspring.

1Erythrocytes (red blood cells) and thrombocytes (platelets) also lack nuclear DNA
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Figure 2.1: Double Stranded DNA and Single Stranded RNA

The transcriptome, or the set of all RNA molecules, is a transient group. Like
DNA, they are polymers of 4 types nucleotides: A, U, C, G; where thymine is
substituted for uracil (U). There are copious classes of RNA but the major type
is mRNA. The role of mRNA is to serve as a temporary messenger for DNA
by harbouring physical instructions intended to produce a particular protein.
More specifically, a gene from a chromosome is transcribed into mRNA where
DNA’s A, T, C, G’s are copied into RNA’s A, U, C, G’s while maintaining the
information encrypted in the particular sequence of nucleotides. This mRNA
is shuttled out of the nucleus and into the main compartment of the cell: the
cytosol. This is where the mRNA is translated into a functional protein, which
can happen multiple times until it is degraded.

The proteome, as you may have guessed, must then be the set of all pro-
teins. These molecules play a staggering number of roles in and outside of cells.
Such duties include: cellular maintenance, energy production, motility, immune
responses, garbage disposal, etc. Proteins are polymers of amino acids which
are either created by the cell or absorbed via diet. Typically, cells employ 20
amino acids to encode their proteins, each with distinct chemical and physical
characteristics. In order to manufacture proteins, the mRNA must be trans-
lated. To use more programming innuendo, 3 tetrits encode a byte (tetryte?),
i.e. ACU, UGA, CCC are these tetrytes. Biologists call these tetrytes (I made
that word up by the way) codons. Now if your spidey senses are tingling, if
there are 4 different nucleotides to choose from and these codons are of length
3, then there should be 34 = 64 permutations. However as we said previously,
there are only 20 amino acids. The reason for this discrepancy is due to redun-
dancy in the code. For example, the amino acid leucine (L) can be encoded by
CUU, CUC, CUA, CUG, UUA, and UUG.
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Figure 2.2: The 20 Standard Amino Acids Figure 2.3: The Standard Codon Table (for
Cryptologists in Biology)

In conclusion, DNA, RNA, and proteins are sequences comprised of their
own alphabet as to perform their own respective function. There is a famous
concept in biology called the central dogma coined by Francis Crick, one of
the scientists who helped discover DNA’s double stranded nature. The central
dogma states: DNA makes RNA makes protein; that is the real takeaway of
this section.

2.2 Phylogenies

Now we take about 15 steps back and look at the bigger picture. Different
species have different genomes, which is the main reason for their differences in
differentiation, differing cell types, and divergent body structures2. This is why
plants possess the biochemical propensity to form sugars from carbon dioxide
due to specific plant proteins unlike us humans who must expel it since man
is wasteful. But what about species that are closely related, such as apes and
humans? Our genomes are quite similar to theirs as well as sharing many of the
same genes. This notion of likeness between species is described in the field of
phylogenetics which terms this idea as evolutionary distance.

Over time, mutations or changes in the genome can accumulate. These
mutations are caused by mundane activites such as errors in cellular replica-

2As well as the relative expression levels and their location of expression of these genes
which truly determine these above factors, but I ran out of words starting with ’d’
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tion, standing in a X-ray machine for prolonged periods, quaffing quantities of
benzene (a known carcinogen so can’t quite recommend for consumption), or
walking/waltzing outside on a sunny day (UV light can cause 50,000 errors in
replication per cell, but most of these get fixed3). We saw previously about gene
duplication, which creates a new copy of the gene to play with, or gene deletion
(but typically not). Finally, genes can be created de novo or “from nothing”
as I like to think of it, which is through random gene mutations that happen to
make a new gene. However, this last method is an extremely seldom occurance.

For this example, let us examine the following phylogenetic tree which details
the genetic relation for a gene family called Hedgehog.

Figure 2.4: Hedgehog Genes but not the Cute Kind

There are many members in this gene family, all professionally named. The
terminal nodes or leaves displays a species followed by an abbreviated gene
name. For example, Danio rerio is the official name for the zebrafish, Gallus
gallus is the chicken, and Homo sapiens is the most dangerous species on Earth.

The internal nodes or branch points represent one of two scenarios. If the
eminating branches contain genes of the same species, the node signifies a gene
duplication event which we talked about in the last section. For the other
case where the species are different, this indicates a speciation event, i.e. some
ancestral organism gave birth to two individuals where one of them became the
parent of one species and one for the other. For an example of the former, we see
the zebrafish harbouring a duplication, which then led to one copy becoming the
Sonic hedgehog (SHH) gene while the other became the Tiggy-winkle hedgehog

3Source: Matt’s 2016 BCH311H1S class that was at freaking 10AM on a Friday, too early
man

9



(TWHH) gene. For the latter, inspect the node between Rattus norvegicus, the
rat, and Mus musculus, the mouse, which then bifurcates to allow for each of
the species to have their own copy of SHH.

On the horizontal axis is some denotation of evolutionary time, i.e. the
shorter a horizontal branch, the more related in sequence similarity to some
ancestral gene, which can be thought of as the root for our purposes. You’ll
notice that the zebrafish has the Indian hedgehog (IHH) which was duplicated
long before the era of the SHH and TWHH genes, implying IHH tanked a bunch
mutations over time, leading to a long branch length. There is no real vertical
axis measurement. The order of how these genes are listed is only tailored by
the biologist to compose a presentable figure.

One last detail to note for those curious. You’ll find numbers at these in-
ternal nodes. These are statistical measures of confidence for the predicted
partitions. You see, the only real data biologists have to work with are the raw
DNA sequences for genes. They assume some model for how genes mutate over
time and employ various maths which I’ll leave out partially (Bayesian statistics
+ hidden Monte Carlo Markov chains = kill me dude) which results in a hy-
pothetical tree that portrays the relationship between genes within and across
species.

The takeaway is that genes are passed on through generation to generation.
This is seen during the formation of novel species which harbour these genes.
Within a species, a gene may also duplicate and diverge to become two different
genes. Also that biologists are great at naming genes.

2.3 Modern Sequencing

Cells are small, nearly insignificant living beings. So how do we extract the
sequences of DNA, RNA, and protein if these are molecules on the scale of
femtometers? Well we don’t have to collect all three as if we know the DNA se-
quence, we can deduce the mRNA and protein sequences through transcription
and translation respectively. But since DNA and RNA are relatively synon-
myous in terms of information (transcription of DNA to RNA is not lossy4),
RNA can also be captured to determine both the original gene and protein. In
addition, RNA is found in higher concentrations than DNA as multiple copies
of mRNA are created from one DNA template. Thus it is desirable to target
RNA for high throughput or highly parallelizable applications.

There are 3 main next generation sequencing techniques: Illumina,
Roche 454, and Ion torrent. Their subtleties are unimportant, except for what
they share in common. RNA molecules can be quite large, so they have to
be sheared down to 100-1000 nucleotides long in order for these sequencing
procedures to elucidate the exact arrangement of As, Ts, Cs, and Gs. An
overview of the procedure: the biologist gets their tissue / cell culture of inter-
est, extracts the RNA, turns the RNA into cDNA (DNA has higher stability

4Excluding the splicing of introns, which are internal segments of RNA which are excised
out before translation
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than RNA, important when you’re shipping your samples to a company thou-
sands of kilometers away), adds some barcode tags to them (specified by the
manufacturer’s protocol), and send them off to a company to sequence them,
as well as some money of course. They will send you a huge electronic text
file, on the order of gigabytes, consisting of short reads, which represent the
sheared RNA sequences. You then run some assembly programs such as BWA
(http://bio-bwa.sourceforge.net/), Trans-Abyss (http://www.bcgsc.ca/
platform/bioinfo/software/trans-abyss), and Trinity (https://trinityrnaseq.
github.io/) to name a few, which will try output your original RNA sequences
you put in (formally, the output sequences are called contigs, which is short
for contiguous sequences which could be the reconstructed RNA sequences or
just misassembled junk).

Figure 2.5: All Hail Illumina Sequencing

Actually let me clear up that important false statement I wrote in that last
paragraph. There are two flavours of assembly programs: guided assembly and
de novo assembly.

Guided assemblers make use of a reference genome / transcriptome, whereby
scientists have already figured out many to most to all of the sequences. Thus
it is a relatively simple matter of reassembling these reads back into their orig-
inal sequence using the reference as a guide. “Why do this?”, you may ask. If
we already have the sequences, why are we reinventing the wheel by extracting
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more RNA to do it again? Well, different tissues may have different levels of
the RNA of the genes created or expressed, and these levels are useful when
considering scenarios such as differentiation (changing of one type of tissue
for another; important during development), tumorigenesis (tumours produce
odd levels of RNAs / proteins), and plasticity (the ability of an organism to
locally adapt to its environment, i.e. tanning of your skin protects from UV
light).

De novo assemblers do not have the luxury of a reference dataset. They
instead employ De Bruijn graphs, to reassemble the reads back into their
full, intact form. In a layman’s example, imagine being an FBI agent searching
through Neilbob’s shredded NSFW documents. You would take a small bit
of fragmented paper (like a read) and compare the ends of the text of that
parchment against other remnants until you find those that would then create a
coherent sentence when merged (the full RNA). Unfortunately, since Neilbob’s
material is so dank and voluminous in its girth, you may accidentally create some
pseudo-sentences, which actually don’t exist. They are more like of chimeras,
merging two unrelated bits together. This will be a source of error in my grand
problem as I will later present. Because we didn’t have a reference, we will
not be able to label which reassembled sequence is which (i.e. they will be left
unnamed). This is where the next tool comes in: BLAST.

Figure 2.6: Guided Versus De Novo Assemblers
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2.4 BLAST

The NCBI doesn’t even make sense as a title, since biotechnology is a lame
adjective for the noun information. Being U.S. government funded, it is an
invaluable resource for bioinformaticians everywhere. They have developed an
utility known as the BLAST which makes use of NCBI’s grandiose sequence
database. The user passes in a query sequence, typically of unknown name, and
“BLAST”s it against the database, where this program will return all matching
or similar sequences to it. Essentially, BLAST assigns a name or annotates
the sequence. To determine which is the best match, BLAST makes use of
statistical data, such as p-values which will be explored more in depth later.

My pipeline that I helped program (https://www.ncbi.nlm.nih.gov/pubmed/
28137744) utilizes this step as to annotate sequences reassembled using de novo
assemblers. It is an indispencible tool for me and bioinformaticians alike. So
without further ado, let’s see what we can do!

2.4.1 Go BLAST yourself

Figure 2.7: Zebrafish PDE6G gene

Let’s see an example. I will use a Zebrafish phosphodiesterase 6 gamma (PDE6G)
gene as my query sequence as shown above. Then using the online BLAST tool
(https://blast.ncbi.nlm.nih.gov/Blast.cgi), I find all known reference se-
quences that align to this sequence which this program nicely spits out to me.
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Figure 2.8: BLAST Output V1.0

Here is one excerpt taken from BLAST. We see that BLAST believes my
query sequence to be similar to a phosphodiesterase subunit gamma-like gene of
Cyprinus carpio. Below it details how the two sequences were aligned where the
“Query” is our Zebrafish PDE6G and the “Sbjct” is the reference sequence. For
the most part, there are good overlaps between these two. This is summarized
in a few statistical parameters as seen in the top row. The score which is a
measure of how well two sequences align, quantified in “bits”, a measurement
used in information theory. In essence, the more the better. The expect or
really the E-value which is the expected number of alignments as good as
this one found in this database (more on this later). Typically we’d like this
number to be as close to zero as possible as to show that this match is more due
to biological relatedness as opposed to random chance. The percent identities
counts the number of exact matches and finally there is the number of gaps or
breaks in the sequence.
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Figure 2.9: BLAST Output V2.0

Here is another annotation prediction of the same Zebrafish query sequence,
but instead showcases series of three alignments. Each of these are known as a
high-scoring segment pair (HSP). What this entails is that there are local
overlaps that are statistically significant but outside of this alignment, the two
sequences diverge, i.e. are dissimilar to each other (see figure below). Each
one of these HSPs has their own statistical parameters as seen in Figure 2.8,
so one could consider the alignment to Cyprinus carpio PDE6G-like to having
one HSP while the alignment to Zebrafish clone CH73-104F5 to having three
HSPs. We will get more into the mathematics of how HSPs are found when we
examine the inner workings of BLAST.

The sequence database it employs can be refined by the user, as to select for
a certain organism. For example, if I took tissue from Neilbob’s left bollock, I
would limit the database sequence to only use Homo sapiens as my model or-
ganism. If you’ve been paying attention and somehow really quick at thinking
(as well as not given up when you got to the first part of the background text),
you’d question, “If we’re BLASTing against a database of known sequences,
then why are we using de novo instead of guided assembly?” Guided assembly
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is highly constrained to the reference it employs while de novo theoretically cre-
ates all full length RNA molecules, i.e. the entire transcriptome, which allows
for a greater degree of freedom as well as preventing the hassle of retrieving a
bunch of reference sequences which one would get from NCBI anyways. Being
able to choose an organism is useful, especially if the organism one is studying is
not a common one. If it isn’t a model organism, it is unlikely to find sequences
online since no one has looked at them yet. To tackle this problem, one can
use the closest (in terms of evolutionary time) model organism to BLAST their
assembled sequences, as their organism would be more related to this model or-
ganism versus others. For example, if one is using Oryzias latipes or the Medaka
fish as their subject of interest, one should use the model organism Danio rerio
or the Zebrafish instead of say Mus musculus or the mouse.

Figure 2.10: Googling “Medaka” Figure 2.11: Googling “Medaka Fish”

If you remember or have the ability to scroll a few paragraphs back, I talked
about gene duplication. The sequences of duplicated genes can drift over evo-
lutionary time and thus mutations can accumulate. In terms of BLASTing, if a
query sequence is due to a duplication, then it could align to either of the gene
doubles in the reference organism. This may not matter as the genes would have
the same function... right? Not necessarily, as now one of the genes can tank
mutations to its sequence and the organism won’t die due its backup copy. Thus
now these genes are allowed to specialize, meaning they can be expressed at dif-
ferent times throughout life (i.e. development vs young vs puberty vs old) and
in different tissues, as well as having their own subfunctions. Their sequences
however may remain quite similar to each other, which boggles biologists and
baffles bioinformaticians. So now there’s a problem of how to determine which
out of the two database sequence is the one given by our query sequence.

As seen in Figure 2.4, let us say that we have the sequence for Homo sapiens
SHH but we don’t know that it’s SHH. We could BLAST this to the set of known
Zebrafish genes to suss out its identity or if its just junk. We would look at the
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statistical output between all alignments and choose the best one accordingly.
But as we’ve seen with the Zebrafish, they have four replicates: DHH, IHH,
SHH, and TWHH, and all of these will have high scoring alignments. One
may triumph over the other, but not by much and the statistics of BLAST is
rather heuristic as we’ll see later. To solve this conundrum, we will employ the
techinique of reciprocal best matching.

2.4.2 Reciprocal Best Matching

Hey this subsection is the name of the document, so it must be nearing the end
right? Oh wait this is still the Basics Chapter, so maybe use the washroom if
you have to.

To differentiate gene duplicates or paralogs from each other, one method is
the use reciprocal best matching. What this entails is the following: BLAST the
query against a database, find the best matching sequence from the database,
BLAST the database sequence against the set of queries, and check that the
best matching sequence finds the original query again.

Figure 2.12: Reciprocal Best Match Idea5

The output from BLAST is sequentially ordered by highest scoring align-
ments first. As both paralogs may point to the same database entry, using the
reverse or reciprocal procedure will be able to suss out the true culprit. This is
convenient for if there’s only duplication in one of the species. If there are 2 or
more, it is not guaranteed perfect reciprocal best matching. Thus, this is the
reciprocal best matching problem.

5Thanks to Boris Steipe, my bioinformatic professor, for “donating” this figure
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Chapter 3

Mathematical Musings

Enough of that boring, yet essential, biology lecture material; let’s get into the
juicy math that I promised you.

3.1 The Programming of BLAST

We begin with the idea of assigning a score to an alignment between two se-
quences. Let us designate the alphabet of the sequence by {a1, a2, ..., ar}; for
example, the alphabet of a DNA sequence would be {A,C,G, T}. Since BLAST
aligns two sequences together, we assign these independent “random” sequences
with letter probabilities {p1, p2, ..., pr} for our query sequence and {p′1, p′2, ..., p′r}
for our reference sequence as certain genes may be biased towards having more
of certain characters on others (depending on the target protein sequence se-
lected by evolution). BLAST pairs a letter ai from the first sequence to aj of
the second sequence; let the score of this pair be sij . Before carrying on further,
we must make some assumptions. We require at least one of the scores to be
positive, i.e. ∃ 1 ≤ i, j ≤ r : sij > 0 and that the expected pair score to be
negative, i.e.

∑
i,j pip

′
jsij < 0. The reason for the former is that if two sequence

segments are to match or be similar to each other, we expect their score to be
positive. If there were no pair scoring values that were positive, it is impossible
to have one of these HSPs. The latter, in contrast, requires that these HSPs not
extend throughout the aligned sequences just by random chance; this would not
be meaningful if two random sequences created by slamming one’s face against
a keyboard were reported as highly similar.
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Figure 3.1: BLOSUM 62

Scoring matrices for determining if two letters are similar to each other have
been developed in the last 50 or so years. For proteins, the first iteration was
the PAM suite which was created through a library of pseudorandom sequences.
This is now superseded by the BLOSUM matrices, utilizing more empirical
(actual) sequences. Their scores are still quite arbitrary as they are just common
integers from -10 to 10 instead of convoluted quantum physics using applied
orbital theory or chemical bonding mechanics. Alas, bioinformaticians feel that
these matrices are suitable for harvesting desirable results (or they’re just lazy).
DNA substitution matrices have also been proposed, but with more confusing
names (JC69, K80, T92, etc.). Typically they are modelled using a continuous-
time Markov chain and thus are pretty neato.

Figure 3.2: DNA Nucleotide Substitution Matrix

To align two sequences, a huge m x n matrix A is created, where m and
n are the lengths of the two sequences: query and reference. The entry of
Aij , 0 ≤ i ≤ m, 0 ≤ j ≤ n is set to the score sij . We then select some top maxima
above a certain threshold and try to extend these paths throughout the matrix.
What I mean by this is that if sij is one of these maxima, we try to extend
this HSP by looking at the scores of letters diagonally before and ahead of it,
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namely si−1j−1 and si+1j+1. Many algorithms are based around this technique
such as the Smith-Waterman and Needleman-Wunsch. However, complications
can occur, such as internal parts of the gene being deleted, extended, or added,
thus leading into gaps. What this entails is that instead of extending the HSP
from say sij to si+1j+1, it may be more favourable to extend to si+1j or sij+1.
In this case, there would be a letter long gap. Heuristic algorithms (scientists
performing voodoo magic instead of reason) claim that creating gaps should be
penalized and extending them (creating gaps of length greater than 1) should
be less so. The total score of the HSP is then docked by the gap tax, whereby
the values for gap formation and elongation are also reasonably arbitrary. Note
here that gap penalties will throw a wrench into the works of the later statistical
theory as gaps make matters terribly muddy. Quick! Try to think of all the
permutations that one could get given a sequence with an arbitrary number of
gaps!1

Figure 3.3: Alignment Matrix. Matches yield a score of 2, gap creation penalty
is -2, and gap extension penalty is -1

3.2 The Statistics of BLAST

So what, we can align two sequences and find some high scoring alignments
using BLAST. Matt, what the deuce is the point of all this chatter? Here is
the first problem out of the trinity. We’ve seen that BLAST outputs a series of

1You should get ℵ0. Now that’s gonna take a while to compute.

20



HSPs each with their own statistical parameters. What do they mean exactly?
Better yet, how should we apply them? To summarize those questions, I will
ask a third: given a HSP, what is its statistical signifance in relating the query
to a reference sequence?

I have tackled this problem for 3 4 days so far. I have not much to report as
it is way to dense the statistical papers it is derived from. But I’ll try my best.

Let us recall the properties of a Poisson process. Let X = (X1, X2, ...) de-
note the sequence of inter-arrival times, T = (T0, T1, T2, ...) denote the sequence
of arrival times, and N = (Nt : t ≥ 0) as the counting process. Based on the
strong renewal assumption, we know that the process restarts at each fixed time
and each arrival time, independently of the past. For some λ ∈ (0,∞), X is
a sequence of independent Exponential(λ) variables, T is a sequence of inde-
pendent Gamma(i, λ) variables for i ∈ N, and N is a sequence of independent
Poisson(λt) variables for t ≥ 0. Some of these processes can be rearranged to
get others, specifically

Nt = max{n ∈ N : Tn ≤ t} Tn = min{t ≥ 0 : Nt = n}
Now onto the paper. Recall the finite alphabet in use is {a}r1 = {a1, a2, ..., ar}

(for DNA, think A, C, G, T). Let X1, X2, ..., Xmn, ... be independent and iden-
tically distributed random variables based on observations from a pair of two
letters ai and aj such that

P(X = si,j) = pip
′
j , i, j ∈ {1, 2, ..., r}, pi, p′j > 0,

∑
pi = 1,

∑
p′j = 1,

is thought of as sampling the pair of letters ai and aj yields the score sij . In
layman’s terms, this shows that the probability of getting a pairwise alphabet
score si,j is the probability of the first letter ai appearing multiplying the prob-
ability of the second letter aj . For example, refer to Figure 3.3 where we aligned
a query against a reference/targer sequence. It appears that if A is matched
with A, we get a score of 2. If the probability of an A is 1/4 in the query and
1/3 in the reference, then the probability of aligning two A’s is 1/12. Carrying
on, we now define a partial sum process

S = {S(i,j)→(i+min(m−i,n−j),j+min(m−i,n−j)) : i = 0, 0 ≤ j ≤ n or 0 ≤ i ≤ m, j = 0},

S(i,j)→(i+c,j+c) =

c∑
k=0

si+k,j+k

where m and n represent the lengths of query and reference sequences re-
spectively. All that this mumbo jumbo represents is the total score of some path
starting at (i, j) in the matrix and ending up at (i + c, j + c) by adding up all
the scores in that diagonal path. Some (proof-esque) assumptions are made on
this process, namely that the moment generating function for X exists, i.e.

E[eθX ] <∞, −θ1 < θ < θ2, θ1, θ2 > 0
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and that the expected value for X is negative, so that {S(i,j)→(i+q,j+q)} is
negative for sufficiently large q. We define two seemingly “random” (both actual
and pun) quantities

M(k, l) = sup{S(i,j)→(i+min(k−i,l−j),j+min(k−i,l−j)) : 0 ≤ i ≤ k, 0 ≤ j ≤ l},
0 ≤ k ≤ m, 0 ≤ l ≤ n (1)

which corresponds to a path with maximal score within a rectangular block
of size k × l in the scoring matrix and

T (y) = inf{
√
k2 + l2 : M(k, l) > y} (2)

which is the smallest partial sum process, i.e. the shortest path with a score
greater than y. Note that according to the definition of T (y) that

M(k, l) = sup{y : T (y) <
√
k2 + l2}. (3)

According to our Poisson process discussion above, these last two identities
look familiar. M(k, l) looks like a part of a counting process while T (y) appears
to denote arrival time of a HSP of a score greater than y. But in actuality, not
quite at all. Their distributions are dependent on a certain parameter defined
as θ∗, which is the unique positive root of the equation E[eθX ] = 1. If you can
tell me why we need this particular solution, let me know. Now for the part
that you’ve accidentally glimpsed anyways and already began to dread trying to
help Matt. Here’s a modified statistics dump from the minds of Iglehart (1972)
and Karlin, Dembo, and Kawabata (1990): When X is nonlattice

lim
m→∞,k→m
n→∞,l→n

P
(
M(k, l)− lnmn

θ∗
≤ x

)
= exp(−K∗e−θ

∗x), (4)

where

K∗ =

exp

(
− 2

∞∑
k=1

1
k

(
E[eθ

∗Sk |Sk < 0] + P(Sk ≥ 0)
))

θ∗E[Xeθ∗X ]
. (5)

where Sk is a random variable representing the sum of the scores of k inde-
pendently chosen letter pairs; and when X is a lattice variable of span δ, 4 is
replaced by

exp(−K+e
−θ∗x) ≤ lim inf

m→∞,k→m
n→∞,l→n

P
(
M(k, l)− lnmn

θ∗
< x

)
≤ lim sup
m→∞,k→m
n→∞,l→n

P
(
M(k, l)− lnmn

θ∗
< x

)
≤ exp(−K−e−θ

∗x),

(6)
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where

K− =
θ∗δ

eθ∗δ − 1
K∗, K+ =

θ∗δ

1− eθ∗δ
K∗.

Are you frightened? Don’t be (yes you should be actually I don’t understand
what I just typed out either). Technically for our purposes we should be using
Equation 6 since we are dealing with a lattice case instead of a nonlattice one
(we’re using a well ordered set i.e. N as opposed to ones with multiple infinitums
or supremums). However, δ is relatively small so the inequality bounds are
sufficiently close to the magical number K∗. The details of how these are defined
are gratuitous, but may be helpful if you are powerful enough to wield a PhD
level of statistics as this next part makes no sense to me. Karlin, Dembo, and
Kawabata (1990) claim

“A concomitant of [the previous theorem] is that the asymptotic (n→
∞) distribution of the number of separate excursions attaining a
score in excess of ln n/θ∗ + x is Poisson with parameter K∗e−θ

∗x”.

How they ever managed to assert this (and everything before it) without a
nicely laid out proof is quite irritating. This statement on the contrary suits my
needs decently. In English, the number of HSPs between a query and a database
hit follows a Poisson distribution with a particular parameter. This parameter,
however complicated it appears to be, is just a number. Treat it with as much
respect as this manuscript: next to nothing. What is fancy about it is that we
don’t have to even think about calculating that parameter; we can just read
it from the output of a BLAST file. “How?” as Atticus Finch once famously
quoted. Think about the expected value of a Poisson distribution (or Wikipedia
it). What you should get is the parameter you put in. Rather convenient. For
our purposes, this number is clearly listed as the ]glsE-value. In conclusion,
the parameter K∗e−θ

∗x is the E-value for a score x.
Let us talk about briefly the two constants involved in the E-value: K∗ and

θ∗. These are indeed constants and not variables. BLAST performs some trick-
ery by taking all the sequences in a database and calculating all letter frequencies
in the sequence alphabet used. It then shuffles the innards of sequences about,
creating pseudo sequences. Using these, it then applies math (oooh spooky)
hard coded in the inner workings of the program and spits out these two con-
stants. Yes I don’t know how it exactly works either but the documentation kind
of sucks for explaining it more than this. But in essence, these two parameters
depend on the database used and will differ from one to another.

Given our newly founded Poisson distribution, we can calculate p-values in
order to show how good these HSPs really are. As a reminder, the p-value rep-
resents the probability of finding a match assuming some base/null distribution,
in our case, we’ll be using a Poisson distribution with the appropriate E-value.
Now we can fully calculate what are the chances of getting at least one HSP
greater (or equal pretty much) to a given score s:

P(1 or more HSPs scoring > s; E) = 1− e−E

23



where E is the E-value. We are finally able to answer the question I asked in
the beginning of this section. Using this formula, we can associate a HSP with
a p-value, which relates the query to a reference sequence in a statistical sense.
But as seen in Figure 2.9, we can have multiple HSPs. It is a trivial matter to
generalize our equation, which is a step that I must partake on for my quest.
Employing the quote, the probability of finding at least n such HSPs scoring
greater than s:

P(n or more HSPs scoring > s; E) = 1− e−E
n−1∑
k=0

Ek

k!

So all I would have to do is given a query that contains several HSPs matching
a database sequence, I take the lowest score and apply the equation above to
discover a singular p-value.

Let me summarize this section for you. We wanted to know how to relate
a HSP’s alignment score to a probability. We’ve seen that this fundamentally
relies on a Poisson distribution with an associated E-value. We then decided to
extend our question, well what if our alignment has multiple HSPs? Applying
the concomitant yields another trivial use of the Poisson distribution involving
a summation over the number of HSPs as well as using the lowest HSP score.
How this is useful is this: given any number of HSPs, we can derive a single
p-value to show statistical significance that the query and reference sequences
are related. One question down, two to go!

An ammendment. I listed all these bludgeoningly hard mathematical ex-
cerpts for two reasons. Firstly, to scare you. Secondly, to show that it is easy
to just accept a conclusion from a paper but to reverse engineer it proves mre
than aggravating. The quote I showed you will do fine, but it applies to if the
HSPs have the same score. So what if the HSPs have different scores? Then this
lemma doesn’t apply. That is why I took the minimum score in order to apply
that conclusion. Could I instead consider these differentially scoring HSPs to be
independent and with their own respective Poisson distributions? I personally
believe I could as they would be sufficiently far enough apart to not become one
big HSP and thus could be considered to be independent. But I am uncertain
as I cannot parse through the sheer statistical obfuscation seen in these papers.
I mention this now because this may be a better mathematical approach. If you
can lift the sword from the stone and crack these statistical codes, let me know.
But for now, onwards!

3.3 The Theory of Information

Here’s a part that could be super easy or the worst of the trinity of problems.
For the record, this is the second conundrum; we solved the first in the last
section. Now we explore the fringes of statistics, mainly information theory.

What is information? One could define it as a particular sequence of charac-
ters that gives meaning. For example, this very text your reading is considered
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information as opposed to apqojc kljivo joi, which appears meaningless. Let us
see how this idea apply to our problem.

We have two sets of DNA sequences, a set of query sequences and a sequence
database. We utilize BLAST to align each query, resulting in one or more HSPs
with one or more reference sequences, each with their own score and thus E-
value. We condense these into one meaningful p-value using the equation derived
in the last section. Now we perform the reciprocal procedure: we BLAST the
database against the set of queries, find HSPs, and create another p-value for
each reference sequence. Now imagine one of these queries aligned to a single
reference sequence, each with a newly created p-value relating to each other.

Query Reference

p− value

p− value

Figure 3.4: Query VS Reference

These p-values may not be necessarily the same due E-value depending on
K∗ and θ∗, or there may not be the same number of HSPs, or the same scores
for each of these HSPs, or the guarantee of there being any HSPs to this query
at all. So we’re left with two p-values, one denoting the probability that the
query forms a set of HSPs of greater score s with the reference and vice-versa.
The question is now: can we further condense these p-values into one measure
of significance such as the probability that these two sequences are the same?

Now this is going to be the sparsest of the sections because I have no clue how
to even attempt this problem. But here’s some small analysis that I can give to
show that I believe that information theory is the most likely candidate to solve
this problem. First of all, we’re dealing with sequences that encode information
(DNA encodes instructions to create proteins with) and these sequences must
be of a certain configuration to be biologically meaningful. Secondly, informa-
tion theory has a concept called cross entropy. This looks at a sequence that
utilizes the members of a given character set and two probability distributions
which one of them is used to define the frequencies at which the characters
are used in the sequence. Cross entropy looks at the average number of char-
acters needed to be drawn in order to distinguish between which probability
distribution that was utilized for the underlying sequence. Applying this to
our example, our character set is the set of aligned DNA nucleotides (i.e. A-A,
A-C, A-G, A-T, C-A, C-C, etc.) and our probability distributions could be the
frequencies of As, Cs, Gs, and Ts in the pooled query and reference sequence
(i.e. combine both query and reference sequences and use the DNA nucleotide
frequencies there) and the distribution could be uniform (i.e. A-A = A-C = ...
= 1/16). (Note the following figure is filler until I feel less lazy to actually do
the example I say here)
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Figure 3.5: Cross Entropy, shows how well the probability distribution q(x)
can explain p(x)

Now I’m not certain upon whether the original two p-values could be some-
how used to create certain distributions in order to apply some information
theory and other mumbo-jumbo, but I am certain that there is some way to
compute a nice, succinct number that relates the query to the reference sort
of like a singular p-value. What this new p-value could be interpreted as the
probability that these two sequences are the same given two random sequences
created from aligned nucleotide frequencies from the pooling of the query and
reference characters. Or not. I’m not sure. So any help on this matter would
be greatly appreciated.

3.4 The Theory of Graphs

All my previous discussion has been leading up to graph theory which I have
next to nil in experience and only cursory knowledge/terminology in. I’ll try
not to embarass myself too hard.

Let us envision a bipartite graph G = (Q, R, E) where Q represents the
set of query sequences, R represents the set of reference sequences, and E be
a directed edge set from Q to R or R to Q. “But Matt,” you’ll interject, “you
can’t have a bipartite graph with directed edges!” Bear with me, it’ll do for
our purposes. Each edge is associated with an HSP with its strength equal to
it’s p-value. For some vertex qi ∈ Q, we can have multiple directed edges going
to say vertex rj ∈ R, each corresponding to a different HSP located within the
aligned sequences. Here is a beautiful rendition of my blundering about:
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q1 r1

q2 r2

q3 r3

q4 r4

q5 r5

sq1r11

sq1r12

sq1r21

sq3r21

sq3r31

sq3r41

sq4r51

sq4r52

sr1q11

sr1q12

sr2q31

sr5q41

Figure 3.6: Directed Bipartite Graph

Now I want the best matching for this “directed bipartite graph” if that
makes any sense, which it shouldn’t. This is the final problem of the trifecta
and why we underwent some spurrious details on how to think of the other
two. We needed to solve the other two before we could tackle this one because
without those, we cannot employ a best matching algorithm. What I mean
is this. We take our set of directed edges {sqirj1 , s

qirj
2 , ...} from qi to rj and

condense them into a single directed edge sqirj , repeating this procedure for
all pairs of vertices. We do this by solving the first problem: sequester the
separate HSP excursion scores into one meaningful p-value. Then we rid of
the directed edges by merging sqirj and srjqi into one unordered pair uqirj by
solving the second problem: merging the p-values into some quantity to signify
their relationship. Finally we solve the third problem: look at these resulting
edges and their strengths to find the best matching between the two sets of
vertices. In diagramatic form:
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q1 r1

q2 r2

q3 r3

q4 r4

q5 r5

sq1r11

sq1r12

sq1r21

sq3r21

sq3r31

sq3r41

sq4r51

sq4r52

sr1q11

sr1q12

sr2q31

sr5q41

Step 1: Condense HSPs

q1 r1

q2 r2

q3 r3

q4 r4

q5 r5

sq1r1

sq1r2

sq3r2

sq3r3

sq3r4

sq4r5

sr1q1

sr2q3

sr5q4

Step 2: Condense p-values

q1 r1

q2 r2

q3 r3

q4 r4

q5 r5

uq1r1

uq1r2

uq3r2

uq3r3

uq3r4

uq4r5

Step 3: Best matching

q1 r1

q2 r2

q3 r3

q4 r4

q5 r5

uq1r1

uq3r2

uq4r5

Step 4: Final product

Figure 3.7: Overview of Methodology

This is probably the easiest of the trio of problems, such that you can just
yell an algorithm name in my general direction and you’d get the Nobel prize
for your effort. I would like some control over the algorithm though, just due
to the nature of biological sequences and paralogs in general. Perhaps a species
I’m using the query has a single copy but my reference had a duplication. Then
I would like the singleton to be used for both references, but alas that may be
too difficult and too error prone. Just an algorithm or some nice caring words
would suffice.
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Chapter 4

Finale

Congratulations! You’ve read all 30 of my beautiful LATEXdocument! I’ve never
worked with this program before and I can tell you this: it sucks. It really does.
I mean trying to get the figures the way I wanted them was really just trial and
error as well as profuse use of Tex - the LaTeX Stack Exchange (equivalent of
StackOverflow). Writing this document was relatively easy, stealing and editing
figures in MS Paint was moderate, but trying to typeset all the equations was
terribad. Why did I choose LaTeX? I knew it could make equations look nice,
which it does for the most part, but also it could make vertices and edges
like those in graph theory. Man the documentation for that part is in French
so yay partial bilingualism (http://mirror.its.dal.ca/ctan/macros/latex/
contrib/tkz/tkz-graph/doc/tkz-graph-screen.pdf).

And now you should definitely be solving my problems. Come on, you don’t
even have a pencil ready and you read the whole thing. Gosh. I’m kidding
of course, this document doesn’t have a macro that interfaces with a webcam,
sends the visual data to a UofT server which analyzes the objects it sees in front
of it, and autogenerates this paragraph subsequently. It’s me wasting your time,
my time, and my professor’s grant money on this document. But hopefully you
can help a poor young soul out. I’m counting on you friendo.
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